Episode 133. Ehlers-Danlos and Hypermobility Syndromes with Associate Professor Chris O'Callaghan

Hypermobile joints were noted by Hippocrates as long ago as 400 BCE and are common, occurring in about 10-25 % of the population. In a minority of patients’ pain and injury results suggest that the clinical findings may reflect a condition referred to as hypermobility spectrum disorder, a polygenic connective tissue syndrome affecting between 1:500 to 1:600 people. This syndrome involves extreme joint flexibility often associated with joint pains, tends to run in families and is more common amongst females. Hypermobility spectrum disorder has been redefined separately from the more stringent diagnostic criteria required for the diagnosis of more extreme hypermobility syndromes such as Ehlers-Danlos syndrome, Marfans disease, Loeys-Dietz or Osteogenesis imperfecta syndromes.

In relation to the above-mentioned syndromes in 1901 a Danish doctor, Dr Lauritz-Edvard Ehlers presented a case of hypermobility, and a similar case was subsequently presented by French physician Dr Henri-Alexandre Danlos in 1908. The name Ehlers-Danlos syndrome (EDS) wasn’t proposed until many years later in 1936 by Englishman Dr Parkes-Weber. We now recognize 13 types of Ehlers-Danlos syndrome with hypermobile EDS as the most common and myopathic EDS, Spondylodysplastic classical EDS and brittle cornea syndrome as just some of the others. About 1: 3500 to 1: 5000 people have EDS. Both dominant and recessive inheritance patterns are noted. Frequent joint and ligament injuries including sprains and dislocations may occur and joint stiffness, clumsiness, fatigue dizziness and associated bowel and bladder complaints are often cited.

Another well-known hypermobility disorder Marfans syndrome is rare affecting about 1 in 5000 and in three-quarters of cases, inheritance is autosomal dominant with the defective fibrillin gene resulting in tall individuals with slender limbs, fingers and toes, cardiac defects including aortic dissections, aortic root aneurysms and valvular incompetence, lens dislocations as well as the high arched palate, crowded teeth and abnormal sternum development (pectus excavatum or pectus carinatum ). A quarter of cases experience a new gene mutation with no family pedigree identified.

These hypermobility conditions have common abnormalities in collagen structure and function. Whilst genetic studies are available in some cases of hypermobility (but not hypermobility spectrum disorder), the criteria for diagnosis referred to as The Beighton criteria are essentially clinical and includes a Beighton score reflecting joint extensibility and mobility combined with arthralgia over 3 months, dislocations and subluxations, soft tissue lesions such as epicondylitis, tenosynovitis and bursitis, Marfanoid habitus and abnormal skin with striae, hyperextensibility, thin skin and papyraceous scarring.

No cure is currently known for these syndromes which are managed symptomatically. Fortunately, societies such as the Ehlers-Danlos Society and physicians such as Assoc Professor Chris O’Callaghan from Melbourne’s Austin Health are the most helpful resources and I welcome you to the interview with Chris to expand our understanding of this subject today.

References:

Assoc Professor Chris O’Callaghan: www.austin.org.au

The Ehlers Danlos Society: www.ehlers-danlos.com

Ehlers-Danlos syndromes: www.nhs.uk

Previous
Previous

Episode 134. Health Impacts on Climate Change with Professor Richard

Next
Next

Episode 132. Acid Base Balance with Associate Professor Adrian Regli (Part 2)